klotz: machine learning* + nlp* + text*

0 bookmark(s) - Sort by: Date ↓ / Title / - Bookmarks from other users for this tag

  1. This article is part of a series titled ‘LLMs from Scratch’, a complete guide to understanding and building Large Language Models (LLMs). In this article, we discuss the self-attention mechanism and how it is used by transformers to create rich and context-aware transformer embeddings.

    The Self-Attention mechanism is used to add context to learned embeddings, which are vectors representing each word in the input sequence. The process involves the following steps:

    1. Learned Embeddings: These are the initial vector representations of words, learned during the training phase. The weights matrix, storing the learned embeddings, is stored in the first linear layer of the Transformer architecture.

    2. Positional Encoding: This step adds positional information to the learned embeddings. Positional information helps the model understand the order of the words in the input sequence, as transformers process all words in parallel, and without this information, they would lose the order of the words.

    3. Self-Attention: The core of the Self-Attention mechanism is to update the learned embeddings with context from the surrounding words in the input sequence. This mechanism determines which words provide context to other words, and this contextual information is used to produce the final contextualized embeddings.
  2. In this article, we will explore various aspects of BERT, including the landscape at the time of its creation, a detailed breakdown of the model architecture, and writing a task-agnostic fine-tuning pipeline, which we demonstrated using sentiment analysis. Despite being one of the earliest LLMs, BERT has remained relevant even today, and continues to find applications in both research and industry.
  3. This article explains how to use the Sentence Transformers library to finetune and train embedding models for a variety of applications, such as retrieval augmented generation, semantic search, and semantic textual similarity. It covers the training components, dataset format, loss function, training arguments, evaluators, and trainer.
  4. A surprising experiment to show that the devil is in the details
  5. Researchers from NYU Tandon School of Engineering investigated whether modern natural language processing systems could solve the daily Connections puzzles from The New York Times. The results showed that while all the AI systems could solve some of the puzzles, they struggled overall.
  6. This article provides a beginner-friendly introduction to Large Language Models (LLMs) and explains the key concepts in a clear and organized way.
    2024-05-10 Tags: , , , , , by klotz
  7. This article explores how to boost the performance of small language models by using supervision from larger ones through knowledge distillation. The article provides a step-by-step guide on how to distill knowledge from a teacher model (LLama 2–70B) to a student model (Tiny-LLama) using unlabeled in-domain data and targeted prompting.
  8. ColBERT is a new way of scoring passage relevance using a BERT language model that substantially solves the problems with dense passage retrieval.
  9. - Embeddings transform words and sentences into sequences of numbers for computers to understand language.
    - This technology powers tools like Siri, Alexa, Google Translate, and generative AI systems like ChatGPT, Bard, and DALL-E.
    - In the early days, embeddings were crafted by hand, which was time-consuming and couldn't adapt to language nuances easily.
    - The 3D hand-crafted embedding app provides an interactive experience to understand this concept.
    - The star visualization method offers an intuitive way to understand word embeddings.
    - Machine learning models like Word2Vec and GloVe revolutionized the generation of word embeddings from large text datasets.
    - Universal Sentence Encoder (USE) extends the concept of word embeddings to entire sentences.
    - TensorFlow Projector is an advanced tool to interactively explore high-dimensional data like word and sentence embeddings.

Top of the page

First / Previous / Next / Last / Page 2 of 0 SemanticScuttle - klotz.me: Tags: machine learning + nlp + text

About - Propulsed by SemanticScuttle